# Hope Vale Aboriginal Shire Council

# **Drinking Water Quality Management Plan**

September 2020



#### Hope Vale Aboriginal Shire Council

Muni Street Hope Vale 4875

ABN: 46 485 582 013

Phone: (07) 4060 9133

Fax: (07) 4060 9331

www.hopevale.qld.gov.au

#### Hope Vale Aboriginal Shire Council

The Hope Vale Aboriginal Shire Council considers this document contains matters relating to the business and financial affairs of Hope Vale Aboriginal Shire Council and its disclosure may be contrary to the public interest under section 49 and Schedule 4 of the *Right to Information Act 2009* (RTI Act). Hope Vale Aboriginal Shire Council would therefore be substantially concerned if this document was to be released publicly. Given this, Hope Vale Aboriginal Shire Council provides this copy of the Drinking Water Quality Management Plan to the recipient agency on the understanding that if the agency receives a Right to Information (RTI) request that captures this document; it will formally consult with Hope Vale Aboriginal Shire Council under section 37 of the RTI Act before a decision is made on the RTI request.

| Document Status |          |                    |            |         |              |
|-----------------|----------|--------------------|------------|---------|--------------|
| Date            | Revision | Description        | Author     | Checked | Approved     |
| February 2020   | 1        | For review         | Updated by |         |              |
|                 |          |                    | Brad       |         |              |
|                 |          |                    | Pinches    |         |              |
| February 2020   | 2        | HVASC approval for | Brad       |         | Gene Brookes |
|                 |          | submission to      | Pinches    |         |              |
|                 |          | DNRME              |            |         |              |
| July 2020       | 3        | HVASC approval for | Brad       |         | Gene Brookes |
|                 |          | submission to      | Pinches,   |         |              |
|                 |          | DNRME – including  | Gene       |         |              |
|                 |          | amendments         | Brookes    |         |              |

# **Table of Contents**

| 1. Re  | gistered Service Details                                        | 4  |
|--------|-----------------------------------------------------------------|----|
| 2. De  | tails of Infrastructure                                         | 5  |
| 2.1.   | Schematics                                                      | 5  |
| 2.2.   | Water Supply Description                                        | 7  |
| 3. Inf | rastructure details                                             | 8  |
| 3.1.   | Sources                                                         | 8  |
| 3.2.   | Treatment                                                       | 10 |
| 3.3.   | Distribution and Reticulation                                   | 12 |
| 3.4.   | Key Stakeholders                                                | 13 |
| 4. Ide | entify Hazards and Hazardous Events                             | 14 |
| 4.1.   | Water Quality Information                                       | 14 |
| 4.2.   | Catchment Characteristics                                       | 17 |
| 4.3.   | Hazard Identification and risk assessment team                  | 18 |
| 5. As  | sessment of Risk                                                | 19 |
| 5.1.   | Methodology                                                     | 19 |
| 5.2.   | Acceptable Risk                                                 | 21 |
| 5.3.   | Hazard identification, risk assessment and uncertainty matrices | 22 |
| 6. Ma  | anaging Risks                                                   | 32 |
| 6.1.   | Risk Management Improvement Program                             | 32 |
| 6.2.   | Operation and maintenance procedures                            | 36 |
| 6.3.   | Management of incidents and emergencies                         | 37 |
| 6.4.   | Service Wide Support – Information Management                   | 40 |
| 7. Op  | perational and Verification Monitoring                          | 41 |
| 7.1.   | Operational Monitoring                                          | 41 |
| 7.2.   | Verification Monitoring (Reportable to DNRME)                   | 47 |
| 7.3.   | Water Sampling and Result Analysis                              | 49 |

# Hope Vale Drinking Water Quality Management Plan

# **1. Registered Service Details**

| Service Provider: | Hope Vale Aboriginal Shire Council                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact details:  | Mr Gene Brookes, Operations Manager<br>Muni Street, Hope Vale 4875,<br>Phone: (07) 4060 9133; Fax: (07) 4060 9331; <u>www.hopevale.qld.gov.au</u> |
| SPID:             | 513                                                                                                                                               |

SPID:

#### Service details:

| Scheme       | Operator                                       | Communities | Current    |             |        | Projected in 10 years |               | ars                   |
|--------------|------------------------------------------------|-------------|------------|-------------|--------|-----------------------|---------------|-----------------------|
| name         |                                                | served      | Population | Connections | Demand | Population            | Connections   | Demand                |
|              |                                                |             |            |             | ML/d   |                       |               | ML/d                  |
| Hope<br>Vale | Hope<br>Vale<br>Aboriginal<br>Shire<br>Council | Hope Vale   | 1020 *     | 350         | .98    | *1,243                | 426<br>(est.) | 1.19<br><i>(est.)</i> |

[\*Based on 2% annual growth]

# 2. Details of Infrastructure

### 2.1. Schematics



Hope vale Water Supply Schematic

Hope Vale Aboriginal Shire Council is responsible for the provision, operation and maintenance of infrastructure used to source, treat and transport potable water to the community residents for domestic and community purposes.

The schematic diagram shown in the figure above shows he general layout of the Hope Vale water supply. Note that PB2 and PB3 are not currently used because of turbidity issues. Bores 4, 6 and 8 are used as back up or alternate water supply, if the need arises. The reticulation has two lines as shown in the schematic layout. One is for the town which is gravity fed. The other is for Millers Block development which is pressurised by booster pumps.

The following figures show the SCADA screens representing the current installation:

### Overview Schematic of Water Supply System from SCADA



#### **Chlorine Treatment Overview**



### 2.2. Water Supply Description

Water for Hope Vale is sourced from underground borefields. There are 6 bores in the new bore field, however, only 4 are currently operational. Two bores have been taken off line due to issues with high turbidity. The old bore field has 3 bores which serve as back up supply for emergency (new bore field failure) if required. The chance for this is low. However, the back up supply is tested and brought online regularly.

Water is pumped using submersible pumps from the bores. The main water supply has high iron content hence aeration is done to oxidise the iron and increase pH. Disinfection is done through chlorination. Primary disinfection is done prior to the clear water settling tank, followed by a re-dose at the reservoir inlet u

The primary dosing point is located at the water treatment plant. The level of residual chlorine is set to a level that is acceptable for immediate consumption as there are farm properties connected to the rising main, ie, before the main storage reservoirs. The chlorination setpoint is set through SCADA, read through an automatic chlorine analyser, and automatically dosed by the SCADA controlled dosing pumps.

Water is rechlorinated at the entry to the reservoirs. Additional rechlorination is required firstly to raise the chlorine level before entering the reservoirs to allow for the retention period, and also as an additional point due the backup bores not having a chlorine dosing point (ie when the main bores are offline, chlorinated water from the water treatment plant is temporarily not available).

The secondary chlorination acts as a trimming system whereby the chlorine level in the reservoir is automatically analysed at the reservoir chlorine circulation outlet by SCADA and subsequently dosed at the reservoir inlet

The infrastructure details and more information on the scheme are provided in the following tables.

# 3. Infrastructure details

### 3.1. Sources

The Hope Vale water supply is sourced from groundwater.

#### Main supply

|                         | PB1                                                                                                                                                                                                                                     | PB6                                                                                                                                                                                                                                     | GA1                                                                                                                                                                                                                                     | GA2                                                                                                                                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aquifer type            | Alluvium primarily<br>related to<br>sediments<br>deposited by the<br>Endeavour River.<br>Good supply of<br>water expected<br>with reliable<br>recharge due to<br>reasonable rainfall<br>and recharge over<br>large areas <sup>1</sup> . | Alluvium primarily<br>related to<br>sediments<br>deposited by the<br>Endeavour River.<br>Good supply of<br>water expected<br>with reliable<br>recharge due to<br>reasonable rainfall<br>and recharge over<br>large areas <sup>1</sup> . | Alluvium primarily<br>related to<br>sediments<br>deposited by the<br>Endeavour River.<br>Good supply of<br>water expected<br>with reliable<br>recharge due to<br>reasonable rainfall<br>and recharge over<br>large areas <sup>1</sup> . | Alluvium primarily<br>related to<br>sediments<br>deposited by the<br>Endeavour River.<br>Good supply of<br>water expected<br>with reliable<br>recharge due to<br>reasonable rainfall<br>and recharge over<br>large areas <sup>1</sup> . |
| % of supply             | 38.86                                                                                                                                                                                                                                   | 30.32                                                                                                                                                                                                                                   | 8.97                                                                                                                                                                                                                                    | 21.78                                                                                                                                                                                                                                   |
| Reliability             | Good usable<br>source, capacity<br>well in excess of<br>demand. Has not<br>run dry since<br>commissioned.                                                                                                                               | Good usable<br>source, capacity<br>well in excess of<br>demand. Has not<br>run dry since<br>commissioned.                                                                                                                               | Good usable<br>source, capacity<br>well in excess of<br>demand. Has not<br>run dry since<br>commissioned.                                                                                                                               | Good usable<br>source, capacity<br>well in excess of<br>demand. Has not<br>run dry since<br>commissioned.                                                                                                                               |
| Pump type               | Submersible<br>electric                                                                                                                                                                                                                 | Submersible<br>electric                                                                                                                                                                                                                 | Submersible electric                                                                                                                                                                                                                    | Submersible<br>electric                                                                                                                                                                                                                 |
| Capacity                | 9.1 L/s                                                                                                                                                                                                                                 | 7.1 L/s                                                                                                                                                                                                                                 | 5.1 L/s                                                                                                                                                                                                                                 | 2.1 L/s                                                                                                                                                                                                                                 |
| Bore depth (m)          | 25 (approx)                                                                                                                                                                                                                             | 25 (approx)                                                                                                                                                                                                                             | 25 (approx)                                                                                                                                                                                                                             | 25 (approx)                                                                                                                                                                                                                             |
| Bore head details       | Raised head 1m<br>above ground and<br>with concrete slab<br>around.                                                                                                                                                                     | Raised head 1m<br>above ground and<br>with concrete slab<br>around.                                                                                                                                                                     | Raised head 1m<br>above ground and<br>with concrete slab<br>around                                                                                                                                                                      | Raised head 1m<br>above ground and<br>with concrete slab<br>around.                                                                                                                                                                     |
| Casing and material     | Cased, PVC                                                                                                                                                                                                                              | Cased, PVC                                                                                                                                                                                                                              | Cased, PVC                                                                                                                                                                                                                              | Cased, PVC                                                                                                                                                                                                                              |
| Water quality<br>issues | Iron bacteria, low<br>pH <6.5 (snapshot<br>monitoring)                                                                                                                                                                                  | Nothing of concern<br>(snapshot<br>monitoring)                                                                                                                                                                                          | Low pH <6.5<br>(snapshot<br>monitoring), iron<br>bacteria                                                                                                                                                                               | Low pH <6.5<br>(snapshot<br>monitoring)                                                                                                                                                                                                 |

<sup>1</sup> - Information obtained from Graham Herbert, Principal Project Officer Hydrology, Water Services, Ayr, Queensland Government.

Pump operation is controlled through SCADA in response to water levels in the Clear Water Tank.



Picture of GA1 showing the raised bore head, concrete slab and fencing.

### Back up supply

|                      | Bore 4                                                                                                                                                                                                                                          | Bore 6                                                                                                                                                                                                                                          | Bore 8                                                                                                                                                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aquifer type         | Piebald Basalt. The<br>aquifer consists of<br>layers of vesicular basalt<br>within a sheet of more<br>massive material.<br>Relatively small storage<br>available, hence<br>requiring careful<br>management during dry<br>seasons <sup>1</sup> . | Piebald Basalt. The<br>aquifer consists of<br>layers of vesicular basalt<br>within a sheet of more<br>massive material.<br>Relatively small storage<br>available, hence<br>requiring careful<br>management during dry<br>seasons <sup>1</sup> . | Piebald Basalt. The<br>aquifer consists of<br>layers of vesicular basalt<br>within a sheet of more<br>massive material.<br>Relatively small storage<br>available, hence<br>requiring careful<br>management during dry<br>seasons <sup>1</sup> . |
| Reliability          | Historically it has not run<br>dry but possibility of de-<br>watering during<br>extended severe<br>drought. Hence new<br>bore filed put in place for<br>water security.                                                                         | Historically it has not run<br>dry but possibility of de-<br>watering during<br>extended severe<br>drought. Hence new<br>bore filed put in place for<br>water security.                                                                         | Historically it has not run<br>dry but possibility of de-<br>watering during<br>extended severe<br>drought. Hence new<br>bore filed put in place for<br>water security.                                                                         |
| Pump type            | Submersible electric                                                                                                                                                                                                                            | Submersible electric                                                                                                                                                                                                                            | Submersible electric                                                                                                                                                                                                                            |
| Bore depth (m)       | 20 (approx)                                                                                                                                                                                                                                     | 20 (approx)                                                                                                                                                                                                                                     | 20 (approx)                                                                                                                                                                                                                                     |
| Bore head details    | Not raised                                                                                                                                                                                                                                      | Not raised                                                                                                                                                                                                                                      | Not raised                                                                                                                                                                                                                                      |
| Casing and material  | Cased, PVC                                                                                                                                                                                                                                      | Cased, PVC                                                                                                                                                                                                                                      | Cased, PVC                                                                                                                                                                                                                                      |
| Water quality issues | None                                                                                                                                                                                                                                            | None                                                                                                                                                                                                                                            | None                                                                                                                                                                                                                                            |

<sup>1</sup> - Information obtained from Graham Herbert, Principal Project Officer Hydrology, Water Services, Ayr, Queensland Government.

Note: The back up bores are run (manually operated) for an hour every Monday.

# 3.2. Treatment

| Name                          | Hope Vale Water Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                       | Aeration, chlorination                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Design capacity               | 1.906 ML/d                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chemicals added               | Sodium hypochlorite (chlorination) purchased as liquid.                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorine storage and turnover | Sodium hypochlorite is purchased as 10% w/v available chlorine. Generally more concentrated solutions (>13%) are instable and can form chlorate. The chlorine containers are stored indoors so that no direct sunlight hits the containers and in a bunding area. It is ensured that there is always sufficient stock available at hand. High quality chlorine is purchased from Elite Chemicals Company to ensure there are no or minimum impurities. |
| Bypass / variation            | The aerator has bypass ability. It is used when the aerator is offline due to cleaning.                                                                                                                                                                                                                                                                                                                                                                |

The main water supply undergoes the full aeration treatment process whereas the back up supply is only chlorinated. By-passing chlorination is not possible.



Picture showing the aerator used for iron control.

### **Clear Water Tank**

| Name             | Clear water tank                                                               |
|------------------|--------------------------------------------------------------------------------|
| Capacity         | 320 kL                                                                         |
| Roofed           | Yes                                                                            |
| Vermin-proof     | Yes                                                                            |
| Runoff from roof | Directed away, opening on top has raised lip which is then securely covered.   |
| Cleaning         | Flushed every Monday to remove sludge. When aerator is cleaned the clear water |
|                  | tank is emptied and cleaned inside.                                            |
| Filling          | Controlled through SCADA (automatic) in response to levels in reservoirs.      |

### **Disinfection (Primary)**

| Location              | At treatment plant                                                |  |
|-----------------------|-------------------------------------------------------------------|--|
| Туре                  | Injection                                                         |  |
| Dose rate             | 10 to 30 ml per hour                                              |  |
| Target residual level | >0.2mg/L - <5mg/L                                                 |  |
| Duty / standby        | Yes (2 pumps)                                                     |  |
| Dosing arrangement    | Automatically dosed through SCADA based on analysed chlorir       |  |
|                       | level in clear water tank                                         |  |
| Alarms                | Alarmed - SCADA system in place for system failure and levels     |  |
|                       | outside of tolerance . Alarms show up in Managers computer (HMI). |  |

### Disinfection (Re-dose Point 1)

| Location                                                               | Reservoir inlet                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------|
| Туре                                                                   | Injection                                                        |
| Dose rate                                                              | 10 to 30 ml per hour                                             |
| Target residual level                                                  | >0.2mg/L - <5mg/L                                                |
| Duty / standby                                                         | Yes                                                              |
| Dosing arrangement Automatically dosed through SCADA based on analysed |                                                                  |
|                                                                        | level in reservoir                                               |
| Alarms                                                                 | Alarmed - SCADA system in place for system failure and levels    |
|                                                                        | outside of tolerance. Alarms show up in Managers computer (HMI). |

#### Reservoirs

| Name             | Reservoir 1 and Reservoir 2                                                   |
|------------------|-------------------------------------------------------------------------------|
| Capacity         | Total 4 ML                                                                    |
| Roofed           | Yes                                                                           |
| Vermin-proof     | Yes                                                                           |
| Runoff from roof | Directed away, opening on top has raised lip which is then securely covered.  |
| Cleaning         | Yearly                                                                        |
| Filling          | Controlled through SCADA (automatic). When level is low, the clear water tank |
|                  | pumps are activated.                                                          |



Picture showing the two reservoirs.

# 3.3. Distribution and Reticulation

| Pipe material(s)        | Mostly uPVC                                                  |
|-------------------------|--------------------------------------------------------------|
| Age range               | Pipe aging is not a major issue at the moment as replacement |
|                         | date has been set for the year 2040.                         |
| Length of mains         | 31.186 km                                                    |
| Issues with dead ends   | Yes, regular flushing done (monthly).                        |
| High pressure issues    | Possible, pressure reduction valve after reservoir           |
| Low pressure issues     | No (No backflow issues)                                      |
| Number of pump stations | 2 (3 pumps from clear water tank – run on duty/standby, 3    |
|                         | booster pumps for reticulation to Millers block – future     |
|                         | development sub-division)                                    |
| Flushing                | Monthly, to remove iron build up and rectify dead end        |
|                         | main/pipe storage                                            |

# 3.4. Key Stakeholders

| Organisation                                | Relevance                                                | How the stakeholder is engaged                                                                                                                            |
|---------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hope Vale community                         | Consumers or customers                                   | Informed of water quality issues when<br>required. Small community hence all<br>informed simultaneously including<br>Health Clinic (vulnerable customer). |
| Elite Chemical<br>Company                   | Good quality chemicals, availability and supply of stock | Provider has confidence in chemical supplier as it is a reputable company with good record.                                                               |
| Electricity company                         | For pumping water from bore fields                       | Ergon company agreement with<br>Government for essential services.                                                                                        |
| Office of Water Supply<br>Regulator (DNRME) | Regulator                                                | Consulted during development of<br>DWQMP, water quality incidents<br>reported to DNRME                                                                    |
| Council                                     | Overall management, budget and finances                  | Kept up to date and informed of water operations. Approval for DWQMP.                                                                                     |
| QBuild                                      | Consumer end plumbing                                    | Responsible for plumbing issues inside households                                                                                                         |
| Queensland Health                           | Health regulator                                         | Provides advice for drinking water incidents when required.                                                                                               |
| Cairns Regional<br>Council Water Lab        | Verification testing                                     | Provides results for verification<br>monitoring. Samples collected and<br>sent to them for analysis.                                                      |

Note: The Health Clinic has its own filtration system to further treat the water supplied.

# 4. Identify Hazards and Hazardous Events

# 4.1. Water Quality Information

The following data is taken from Council records for the most recent financial year

#### Raw Water Combined (aerator inlet)

| Parameter | Time<br>period              | No of samples | Min<br>value | Max value | Average value | Comments                                                                                      |
|-----------|-----------------------------|---------------|--------------|-----------|---------------|-----------------------------------------------------------------------------------------------|
| рН        | July 2019<br>– June<br>2020 | 94            | 5.66         | 6.62      | 5.88          | pH for raw water is<br>naturally below neutral<br>level however increases<br>during aeration. |
| E. coli   | July 2019<br>– June<br>2020 | 52            | Absent       |           |               | Not detected.                                                                                 |
| Turbidity | July 2019<br>– June<br>2020 | 96            | 3.06         | 5.91      | 4.66          | Turbidity prior to entering aerator                                                           |

#### Treated water (treatment plant outlet)

| Parameter        | Time                        | No of | Min    | Max value | Average | Comments                                                                                                                     |
|------------------|-----------------------------|-------|--------|-----------|---------|------------------------------------------------------------------------------------------------------------------------------|
| рН               | July 2019<br>– June<br>2020 | 95    | 7.09   | 7.36      | 7.24    | Operational monitoring.<br>Average shows pH<br>correction step is<br>controlled (Readings<br>recorded at aerator<br>outlet). |
| E. coli          | July 2019<br>– June<br>2020 | 52    | Absent |           |         | Not detected.                                                                                                                |
| Free<br>chlorine | July 2019<br>– June<br>2010 | 364   | 0.63   | .0.68     | 0.64    | Stable chlorine levels prior to transfer to storage.                                                                         |
| Turbidity        | July 2019<br>– June<br>2010 | 256   | 1.84   | 4.00      | 2.67    | Turbidity is generally low after passing through aerator and settling tank.                                                  |

#### Treated water (reservoir outlet)

| Parameter        | Time<br>period              | No of samples | Min<br>value | Max value | Average<br>value | Comments                                      |
|------------------|-----------------------------|---------------|--------------|-----------|------------------|-----------------------------------------------|
| рН               | July 2019<br>– June<br>2010 | 259           | 7.34         | 7.51      | 7.42             | Average shows pH is acceptable                |
| E. coli          | July 2019<br>– June<br>2010 | 52            | Absent       |           |                  | Not detected.                                 |
| Free<br>chlorine | July 2019<br>– June<br>2010 | 365           | 0.8          | 0.97      | 0.89             | stable levels after chlorine trimming system. |

| Parameter | Time<br>period              | No of samples | Min<br>value | Max value | Average<br>value | Comments                                   |
|-----------|-----------------------------|---------------|--------------|-----------|------------------|--------------------------------------------|
| Turbidity | July 2019<br>– June<br>2010 | 257           | 1.02         | 2.32      | 1.66             | stable levels. Average is good at < 2 NTU. |

#### Treated water (town)

| Parameter        | Time<br>period                 | No of samples | Min value   | Max value   | Average<br>value | Comments                                                                      |
|------------------|--------------------------------|---------------|-------------|-------------|------------------|-------------------------------------------------------------------------------|
| рН               | July<br>2019 –<br>June<br>2010 | 517           | 7.34        | 7.51        | 7.4              | Average shows pH is acceptable.                                               |
| E. coli          | July<br>2019 –<br>June<br>2010 | 52            | <1cfu/100mL | <1cfu/100mL | <1cfu/100mL.     | Nil recent positive test results.                                             |
| Free<br>chlorine | July<br>2019 –<br>June<br>2010 | 1,551         | 0.42        | 0.83        | 0.58             | Residual chlorine<br>levels are stable<br>throughout the<br>reticulated area  |
| Turbidity        | July<br>2019 –<br>June<br>2010 | 516           | 1.02        | 3.01        | 1.81             | Average is good at<br>< 2 NTU. Reservoir<br>cleaning routinely<br>undertaken. |

Incident History (reported to DNRME)

Nil test showing positive E.Coli within the past two years.

#### Snapshot Monitoring

The Snapshot Monitoring Program is being facilitated by DNRME to assist Providers gather source water quality information to assist in the identification of possible hazards from the catchment.

Hope Vale took part in the Program in September 2011, with the results shown in the tables below. The results indicate that some bores (PB1, GA1 and GA2) have low pH, <6.5 (not of health concern but is corrected for corrosion control); and GA1 and PB1 have high natural iron. The analysis of treated water for chlorate shows that chlorate production is under control.

The snapshot monitoring undertaken in 2011 is the most recent raw water quality analysis undertaken on all production and backup bores.

There are no issues with other trace metals of health concern (such as arsenic, fluoride, manganese) or with radionuclides.

#### Snapshot Monitoring Results (September 2011)

| Name | Aluminium | Antimony | Arsenic  | Barium | Beryllium | Boron | Cadmium  | Chromium | Cobalt   | Copper | Iron  | Lead   | Manganes | Molybdenu | Nickel | Selenium | Silver  |
|------|-----------|----------|----------|--------|-----------|-------|----------|----------|----------|--------|-------|--------|----------|-----------|--------|----------|---------|
|      | mg/L      | mg/L     | mg/L     | mg/L   | mg/L      | mg/L  | mg/L     | mg/L     | mg/L     | mg/L   | mg/L  | mg/L   | mg/L     | mg/L      | mg/L   | mg/L     | mg/L    |
| ADWG | 0.2       | 0.003    | 0.01     | 2      | 0.06      | 4     | 0.002    | 0.05     |          | 2      | 0.3   | 0.01   | 0.5      | 0.05      | 0.02   | 0.01     | 0.1     |
| B6   | 0.013     | < 0.0001 | < 0.0003 | 0.0072 | < 0.0001  | 0.016 | < 0.0001 | 0.0007   | < 0.0001 | 0.002  | 0.14  | 0.0003 | 0.0051   | < 0.0001  | 0.0008 | < 0.0010 | < 0.001 |
| B4   | < 0.003   | < 0.0001 | < 0.0003 | 0.0072 | < 0.0001  | 0.024 | < 0.0001 | 0.0003   | < 0.0001 | 0.006  | 0.014 | 0.0004 | 0.003    | < 0.0001  | 0.0011 | < 0.0010 | < 0.001 |
| B8   | 0.005     | < 0.0001 | < 0.0003 | 0.0082 | < 0.0001  | 0.018 | < 0.0001 | 0.0003   | < 0.0001 | 0.005  | 0.01  | 0.0012 | 0.0016   | < 0.0001  | 0.0009 | < 0.0010 | < 0.001 |
| GA2  | < 0.003   | < 0.0001 | < 0.0003 | 0.085  | < 0.0001  | 0.029 | < 0.0001 | 0.0008   | 0.0004   | 0.008  | 0.015 | 0.0005 | 0.0056   | < 0.0001  | 0.0014 | < 0.0010 | < 0.001 |
| GA1  | 0.004     | < 0.0001 | < 0.0003 | 0.023  | < 0.0001  | 0.036 | < 0.0001 | 0.0023   | 0.0002   | 0.01   | 0.21  | 0.0006 | 0.037    | < 0.0001  | 0.0011 | < 0.0010 | < 0.001 |
| PB1  | 0.006     | < 0.0001 | < 0.0003 | 0.029  | < 0.0001  | 0.028 | < 0.0001 | < 0.0001 | < 0.0001 | 0.03   | 0.93  | 0.0071 | 0.024    | < 0.0001  | 0.0003 | < 0.0010 | < 0.001 |
| PB6  |           |          |          |        |           |       |          |          |          |        |       |        |          |           |        |          |         |

| Name | Conductiv | itpH    | Temperatu | Total Hardn | Alkalinity | Silica | TDS  | True Colou | Turbidity | Sodium | Potassium | Calcium | Magnesiur | Hydrogen | Bicarbona | t Carbonate | Hydroxide |
|------|-----------|---------|-----------|-------------|------------|--------|------|------------|-----------|--------|-----------|---------|-----------|----------|-----------|-------------|-----------|
|      | uS/cm     |         | deg C     | mg/L as Ca  | mg/L CaC   | mg/L   | mg/L | Hazen      | NTU       | mg/L   | mg/L      | mg/L    | mg/L      | mg/L     | mg/L      | mg/L        | mg/L      |
| ADWG |           | 6.5-8.5 |           |             |            | 80     | 600  | 15         | 5         | 180    |           |         |           |          |           |             |           |
| B6   | 214       | 6.84    | 22        | 72          | 87         | 63     | 172  | <1         | 1         | 16     | 1.1       | 15      | 8.6       | 0        | 106       | 0           | 0         |
| B4   | 219       | 7.35    | 22        | 72          | 86         | 59     | 170  | 2          | <1        | 17     | 1.1       | 13      | 9.9       | 0        | 105       | 0.1         | 0         |
| B8   | 238       | 6.99    | 22        | 82          | 95         | 57     | 177  | 2          | <1        | 17     | 1.1       | 15      | 10        | 0        | 116       | 0.1         | 0         |
| GA2  | 166       | 6.13    | 22        | 16          | 20         | 22     | 103  | 2          | <1        | 24     | 0.7       | 1.8     | 2.8       | 0        | 24        | 0           | 0         |
| GA1  | 173       | 6.04    | 22        | 15          | 17         | 22     | 107  | 2          | 1         | 27     | 0.5       | 1.5     | 2.6       | 0        | 21        | 0           | 0         |
| PB1  | 133       | 6.45    | 22        | 12          | 28         | 17     | 85   | 2          | 8         | 21     | 1.6       | 1.6     | 1.8       | 0        | 34        | 0           | 0         |
| PB6  | 239       | 6.92    | 22        | 28          | 68         | 16     | 139  | <1         | 13        | 38     | 1.9       | 5.5     | 3.6       | 0        | 83        | 0           | 0         |

|           | Total Alpha Activity | Total Beta Activity | K40-Corrected |
|-----------|----------------------|---------------------|---------------|
|           | Bq/L                 | Bq/L                | Bq/L          |
| Sample ID | PQ/GABW              | PQ/GABW             | PQ/GABW       |
| B6        | <0.09                | <0.2                | <0.2          |
| B4        | <0.09                | <0.2                | <0.2          |
| B8        | <0.09                | <0.2                | <0.2          |
| GA2       | <0.09                | <0.2                | <0.2          |
| GA1       | <0.09                | <0.2                | <0.2          |
| PB1       | <0.09                | <0.2                | <0.2          |
| PB6       | <0.09                | <0.2                | <0.2          |

| Reticulated town water | Chlorate (mg/L) |
|------------------------|-----------------|
| Sample 1               | 0.08            |
| Sample 2               | 0.13            |

# 4.2. Catchment Characteristics

#### **Summary Description**

Hope Vale catchment is mostly rural with residential houses. The bore fields (old and new) are relatively isolated from the houses with only a few houses within a 400 m radius of the bore field. The residential houses have septic tanks, which are emptied by a contractor when full.

The bore heads are all raised with about a 1 meter height concrete slab around the bores. All bores are fenced and locked. Round up is sprayed near the fences to control weeds.

| Characteristics                                                                  | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area                                                                             | The exact area of the catchment is not known as information about the groundwater system is limited <sup>1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                         |
| Topography                                                                       | The bores are at a lower level than the town. However, they are a considerable distance away, with borehead well protected and secured from any ingress.                                                                                                                                                                                                                                                                                                                                                                   |
| Soil Type and Geology <sup>1</sup>                                               | Hodgkinson Formation. This formation consists of metamorphic rocks,<br>usually greywacke (cooked up sandstone), mudstones and siltstones.<br>These rocks underlie most other rock types in the Hope Vale area and are<br>near the ground surface in low ridges to the north, west and south of<br>Hopevale. Groundwater occurs in fractures within the rock matrix and as<br>such storage and transmissivity of water can be limited.                                                                                      |
|                                                                                  | Dalrymple Sandstone. The formation is comprised mostly of clean<br>sandstone which provides for good aquifer prospects in areas where the<br>elevation, and associated rock exposure does not allow water to drain<br>away rapidly after recharge. This formation occurs principally to the south<br>of Hopevale and also in extensive areas to the west. As this formation<br>does not occur in the immediate area of Hopevale it has limited value for<br>town water supply purposes. but does support some outstations. |
|                                                                                  | Piebald Basalt. This formation underlies the Hopevale township and a significant area to the west. The aquifer consists of layers of vesicular basalt within a sheet of more massive material. This system, supplemented by water drawn from the underlying metamorphic rocks.                                                                                                                                                                                                                                             |
|                                                                                  | Alluvium. This area is located to the east of Hopevale township and is primarily related to sediments deposited by the Endeavour River. There is not a great deal of information about this system.                                                                                                                                                                                                                                                                                                                        |
| Rainfall                                                                         | Most rain occurs in the wet season Nov - Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Incidence of major flooding and bushfires                                        | No incidences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Land use                                                                         | Residential rural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Agriculture, industry, mining, farming                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potential sources of microbial<br>and chemical contamination in<br>the catchment | Microbial – septic tanks overflow, animal faeces.<br>Chemical – Round up spraying                                                                                                                                                                                                                                                                                                                                                                                                                                          |

<sup>1</sup> - Information obtained from Graham Herbert, Principal Project Officer Hydrology, Water Services, Ayr, Queensland Government.

# 4.3. Hazard Identification and risk assessment team

| Name                              | Position                  | Expertise and system knowledge                                                                   |
|-----------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|
| Tom Jones                         | Manager – Water and Waste | Overall understanding of system, hazards and hazardous events, and operational philosophy        |
| Reggie Gilmartin<br>and Lex Bowen | System operators          | System operators each with over 12 years of experience. Understanding of operational philosophy. |
| Keenen Pearson                    | Co-worker (operations)    | Junior person with the team.                                                                     |

# 5. Assessment of Risk

# 5.1. Methodology

The methodology used for the risk assessment has been adopted from the DNRME Preparing a Drinking Water Quality Management Plan Supporting Information (Sept 2010).

Maximum risk assumes no preventive measures in place (i.e. no treatment is done); and residual risk includes the existing preventive measures.

| Likelihood     | Descriptors                                                                   |
|----------------|-------------------------------------------------------------------------------|
| Rare           | Occurs less than or equal to once every 5 years                               |
| Unlikely       | Occurs more often than once every 5 years and up to once per year             |
| Possible       | Occurs more often than once per year and up to once a month (12/yr)           |
| Likely         | Occurs more often than once per month (12/yr) and up to once per week (52/yr) |
| Almost Certain | Occurs more often than once per week (52/yr)                                  |

| Consequence   | Descriptors                                                                                  |
|---------------|----------------------------------------------------------------------------------------------|
| Insignificant | Isolatred exceedence of aesthetic parameter with little or no disruption to normal operation |
| Minor         | Potential local aesthetic, isolated exceedence of chronic health parameter                   |
| Moderate      | Potential widespread aesthetic impact or repeated breach of chronic health parameter         |
| Major         | Potential acute health impact, no declared outbreak expected                                 |
| Catastrophic  | Potential acute health impact, declared outbreak expected                                    |

| Likeliheed     |               | C      | onsequence | :       |              |
|----------------|---------------|--------|------------|---------|--------------|
| LIKEIINOOd     | Insignificant | Minor  | Moderate   | Major   | Catastrophic |
| Almost cortain | Medium        | High   | High       | Extreme | Extreme      |
| Almost certain | (6)           | (10)   | (15)       | (20)    | (25)         |
| Likoly         | Medium        | Medium | High       | High    | Extreme      |
| Likely         | (5)           | (8)    | (12)       | (16)    | (20)         |
| Dessible       | Low           | Medium | Medium     | High    | High         |
| Possible       | (3)           | (6)    | (9)        | (12)    | (15)         |
| Unlikoly       | Low           | Low    | Medium     | Medium  | High         |
| Ollinkery      | (2)           | (4)    | (6)        | (8)     | (10)         |
| Para           | Low           | Low    | Low        | Medium  | Medium       |
| Raie           | (1)           | (2)    | (3)        | (5)     | (6)          |

| Level of<br>Uncertainty | Definition                                                                                                                                                                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Certain                 | There is 5 years of continuous monitoring data, which<br>has been trended and assessed, with at least daily<br>monitoring; or<br>The processes involved are thoroughly understood.                                                 |
| Confident               | There is 5 years of continuous monitoring data, which<br>has been collated and assessed, with at least weekly<br>monitoring or for the duration of seasonal events; or<br>There is a good understanding of the processes involved. |
| Reliable                | There is at least a year of continuous monitoring data<br>available, which has been assessed; or<br>There is reasonable understanding of the processes<br>involved.                                                                |
| Estimate                | There is limited monitoring data available; or<br>There is limited understanding of the processes involved.                                                                                                                        |
| Uncertain               | There is limited or no monitoring data available; or The processes are not well understood.                                                                                                                                        |

## 5.2. Acceptable Risk

Low residual risks are considered as acceptable risks, and have appropriate control measures to manage the risks for continuous improvement. Medium (and higher) risks have been associated with an Improvement action.

In addition, an improvement action has also been associated with places where the level of uncertainty is stated as uncertain or estimate.

A few low residual risks also have an improvement action where it was decided that the action would strengthen the performance of the existing control measures.

# 5.3. Hazard identification, risk assessment and uncertainty matrices

#### Catchment and source infrastructure

| Hazard                  | Hazardous event                                                                    |              | Max risk   |            | Existing preventive                                                                                                                            |             | Res risk   |            | Uncertainty | y Risk management  |
|-------------------------|------------------------------------------------------------------------------------|--------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-------------|--------------------|
|                         |                                                                                    | Consequence  | Likelihood | Risk level | measures / barriers                                                                                                                            | Consequence | Likelihood | Risk level |             | improvement action |
| Bacteria<br>(harmful)   | Local pooling or<br>surface runoff<br>(rainfall) washing<br>overflowing<br>septics | Catastrophic | Rare       | Medium     | Borehead raised<br>1m above ground<br>level so no ingress.<br>No residential<br>blocks close to<br>bores.<br>Disinfection at<br>three points.  | Minor       | Rare       | Low        | Confident   |                    |
|                         | Animal access /<br>runoff causing<br>ingress of animal<br>faeces                   | Catastrophic | Possible   | High       | Fenced.<br>Weekly checks for<br>fence integrity by<br>operators.<br>Borehead raised<br>1m above ground<br>level so no ingress<br>Disinfection. | Minor       | Rare       | Low        | Confident   |                    |
|                         | Effectiveness of<br>casing                                                         | Moderate     | Possible   | Medium     | PVC cased.<br>Recently changed<br>in 2000.<br>Disinfection.                                                                                    | Minor       | Rare       | Low        | Confident   |                    |
|                         | Borehead design<br>(not raised) –<br>main supply                                   | Moderate     | Possible   | Medium     | Borehead raised<br>1m above ground<br>level so no ingress.<br>Disinfection at<br>three points.                                                 | Minor       | Rare       | Low        | Confident   |                    |
|                         | Borehead design<br>(not raised) –<br>backup supply (3<br>bores at ground<br>level) | Moderate     | Possible   | Medium     | Disinfection (2<br>points).<br>Back up source<br>only. It is ensured<br>that effective<br>chlorine residual is<br>always maintained            | Minor       | Unlikely   | Low        | Confident   |                    |
| Protozoa                | Animal access /                                                                    | Catastrophic | Possible   | High       | Fenced                                                                                                                                         | Minor       | Rare       | Low        | Confident   |                    |
| (cyrpto and<br>giardia) | runoff causing<br>ingress of animal<br>faeces                                      | Catabilopint | 1 0331018  | - iigii    | Weekly checks for fence integrity.                                                                                                             |             | Raie       | LOW        | Conndent    |                    |

| Hazard                | Hazardous event                                                                    |             | Max risk   |            | Existing preventive                                                                                                                                                                                                                          |             | Res risk   |            | Uncertainty | Risk management               |
|-----------------------|------------------------------------------------------------------------------------|-------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-------------|-------------------------------|
|                       |                                                                                    | Consequence | Likelihood | Risk level | measures / barriers                                                                                                                                                                                                                          | Consequence | Likelihood | Risk level |             | improvement action            |
|                       |                                                                                    |             |            |            | Borehead raised<br>1m above ground<br>level so no ingress<br>Disinfection.                                                                                                                                                                   |             |            |            |             |                               |
|                       | Effectiveness of<br>casing                                                         | Moderate    | Possible   | Medium     | PVC cased.<br>Recently changed<br>in 2000.<br>Disinfection.                                                                                                                                                                                  | Minor       | Rare       | Low        | Confident   |                               |
|                       | Borehead design<br>(not raised) –<br>main supply                                   | Moderate    | Possible   | Medium     | Source water<br>protection through<br>fencing off animals.<br>Borehead raised<br>1m above ground<br>level so no ingress.<br>Disinfection at<br>three points for<br>Giardia.                                                                  | Minor       | Rare       | Low        | Confident   |                               |
|                       | Borehead design<br>(not raised) –<br>backup supply (3<br>bores at ground<br>level) | Moderate    | Possible   | Medium     | Source water<br>protection through<br>fencing off animals.<br>Disinfection (2<br>points) for Giardia.<br>Back up source<br>only.                                                                                                             | Minor       | Unlikely   | Low        | Reliable    | Comment: Only back up supply. |
| Pesticide<br>residues | Spraying of<br>Round up around<br>bore fence                                       | Moderate    | Possible   | Medium     | Raised bore head,<br>concreted around<br>bore head.<br>Moderate spraying<br>done only to kill off<br>weeds/grass<br>around fence, not<br>spraying done near<br>borehead.<br>Snapshot<br>monitoring<br>completed for<br>future risk analysis. | Minor       | Rare       | Low        | Estimate    |                               |

| Hazard                            | Hazardous event                                                | Max risk     |                   |            | Existing preventive                                                                                                                                        |             | Uncertainty | y Risk management |           |                                                                                                                            |
|-----------------------------------|----------------------------------------------------------------|--------------|-------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                | Consequence  | Likelihood        | Risk level | measures / barriers                                                                                                                                        | Consequence | Likelihood  | Risk level        |           | improvement action                                                                                                         |
| Nitrate                           | Surface runoff<br>(rainfall) washing<br>overflowing<br>septics | Moderate     | Possible          | Medium     | Borehead raised<br>1m above ground<br>level so no ingress.<br>No residential<br>blocks close to<br>bores.                                                  | Minor       | Rare        | Low               | Reliable  |                                                                                                                            |
|                                   |                                                                |              |                   |            |                                                                                                                                                            |             | _           |                   |           |                                                                                                                            |
| Turbidity                         | Natural                                                        | Moderate     | Possible          | Medium     | Settling in<br>reservoirs.<br>Disinfection.                                                                                                                | Minor       | Rare        | Low               | Uncertain | Council to<br>investigate further<br>filtration at bores to<br>improve turbidity<br>before processing<br>and disinfection. |
|                                   |                                                                |              |                   |            |                                                                                                                                                            |             |             |                   |           |                                                                                                                            |
| Iron (aesthetic)<br>– GA1 and PB1 | Natural geology                                                | Moderate     | Almost<br>certain | High       | Aeration to<br>remove/reduce iron<br>levels.<br>Flushing (monthly).<br>Chemical clean of<br>bores (yearly).<br>Cleaning of<br>reservoirs every 2<br>years. | Minor       | Possible    | Low               | Estimate  |                                                                                                                            |
| Newster                           | Electrical failure                                             | Madarata     | Dara              |            |                                                                                                                                                            | Minor       | Dara        |                   | Confident |                                                                                                                            |
|                                   | Electrical failure                                             | Moderate     | Rare              | LOW        | storage to last until<br>fault is rectified.<br>Disaster<br>management plan.<br>Automated back up<br>generators at bores<br>and treatment<br>plant.        | Minor       | Kare        | LOW               | Conlident |                                                                                                                            |
|                                   | Pump failure                                                   | Moderate     | Possible          | Medium     | 4 bores and pumps<br>in use.<br>Emergency back<br>up supply.                                                                                               | Minor       | Unlikely    | Low               | Confident |                                                                                                                            |
|                                   | Bore field failure                                             | Catastrophic | Possible          | High       | Two bore fields<br>(new - main supply<br>and old - back up<br>supply)                                                                                      | Minor       | Unlikely    | Low               | Confident |                                                                                                                            |

| Hazard                                | Hazardous event |             | Max risk   |            | Existing preventive                                              |             | Res risk   |            | Uncertainty | Risk management    |
|---------------------------------------|-----------------|-------------|------------|------------|------------------------------------------------------------------|-------------|------------|------------|-------------|--------------------|
|                                       |                 | Consequence | Likelihood | Risk level | measures / barriers                                              | Consequence | Likelihood | Risk level |             | improvement action |
| Heavy metals<br>of concern (As,<br>F) | Natural geology | Minor       | Rare       | Low        | Not naturally<br>present as from<br>snapshot<br>monitoring data. | Minor       | Rare       | Low        | Estimate    |                    |
|                                       |                 |             |            |            |                                                                  |             |            |            |             |                    |
| Radionuclides                         | Natural geology | Minor       | Rare       | Low        | Not naturally<br>present as from<br>snapshot<br>monitoring data. | Minor       | Rare       | Low        | Estimate    |                    |

#### Treatment process

| Hazard           | Hazardous event                                                                     |             | Max risk   |            | Existing preventive                                                                                        |             | Res risk   |            | Uncertainty | Risk management                                                        |
|------------------|-------------------------------------------------------------------------------------|-------------|------------|------------|------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-------------|------------------------------------------------------------------------|
|                  |                                                                                     | Consequence | Likelihood | Risk level | measures / barriers                                                                                        | Consequence | Likelihood | Risk level |             | improvement plan                                                       |
| Aeration         |                                                                                     |             |            |            |                                                                                                            |             |            |            |             |                                                                        |
| Iron (aesthetic) | Iron build up<br>causing blockage<br>/ Iron<br>breakthrough /<br>Aerator efficiency | Moderate    | Possible   | Medium     | Regular cleaning of<br>aerators based on<br>visual checks by<br>operators and<br>decrease in flow<br>rate. | Minor       | Unlikely   | Low        | Confident   | Building proper<br>clean up deck for<br>ease and safety of<br>cleaning |
|                  |                                                                                     |             |            |            |                                                                                                            |             |            |            |             |                                                                        |

#### **Disinfection process**

| Hazard       | Hazardous event |             | Max risk   |            | Existing preventive                                                                                                                                                                                                            |             | Res risk   |            | Uncertainty | Risk management  |
|--------------|-----------------|-------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-------------|------------------|
|              |                 | Consequence | Likelihood | Risk level | measures / barriers                                                                                                                                                                                                            | Consequence | Likelihood | Risk level |             | improvement plan |
| Primary dose |                 |             |            |            |                                                                                                                                                                                                                                |             |            |            |             |                  |
| point        |                 |             |            |            |                                                                                                                                                                                                                                |             |            |            |             |                  |
| Chlorine     | Over dosing     | Moderate    | Possible   | Medium     | Daily chlorine<br>testing results.<br>Visual checks by<br>operators and<br>manual<br>adjustments.<br>Experience and on<br>the job training.<br>Automated dosing<br>has a cut-off inside<br>SCADA that shuts<br>down the entire | Minor       | Unlikely   | Low        | Certain     |                  |
|              |                 |             |            |            | system until the<br>fault is resolved.                                                                                                                                                                                         |             |            |            |             |                  |

| Hazard                | Hazardous event                                                                                                                        |              | Max risk   |            | Existing preventive                                                                                                                                                                                                                                                                                       |             | Res risk   | Res risk l |           | Risk management  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-----------|------------------|
|                       |                                                                                                                                        | Consequence  | Likelihood | Risk level | measures / barriers                                                                                                                                                                                                                                                                                       | Consequence | Likelihood | Risk level |           | improvement plan |
|                       |                                                                                                                                        |              |            |            |                                                                                                                                                                                                                                                                                                           |             |            |            |           |                  |
| Bacteria<br>(harmful) | Under dose of<br>chlorine / no<br>chlorine caused<br>by pipe burst<br>(injector line) and<br>equipment<br>breakdown.<br>High turbidity | Catastrophic | Possible   | High       | 2 pumps available.<br>Daily chlorine<br>testing results.<br>Visual checks by<br>operators and<br>manual<br>adjustments.<br>Two more re-dose<br>points further<br>downstream.<br>Automated dosing<br>has a cut-off inside<br>SCADA that shuts<br>down the entire<br>system until the<br>fault is resolved. | Moderate    | Rare       | Low        | Confident |                  |
|                       | Insufficient<br>contact time                                                                                                           | Major        | Possible   | High       | Sufficient mixing<br>and contact time<br>available through<br>presence of clear<br>water tank and 2<br>reservoirs. > 30<br>minutes before<br>water reaches first<br>customer.                                                                                                                             | Minor       | Unlikely   | Low        | Confident |                  |
| Re-dose points        |                                                                                                                                        |              |            |            |                                                                                                                                                                                                                                                                                                           |             |            |            |           |                  |
| Chlorine              | Over dosing                                                                                                                            | Moderate     | Possible   | Medium     | Daily chlorine<br>testing results.<br>Visual checks by<br>operators and<br>manual<br>adjustments.<br>Experience and on<br>the job training.                                                                                                                                                               | Minor       | Unlikely   | Low        |           |                  |
|                       |                                                                                                                                        |              |            |            |                                                                                                                                                                                                                                                                                                           |             |            |            |           |                  |
| Bacteria<br>(harmful) | Under dose of<br>chlorine / no<br>chlorine caused<br>by pipe burst<br>(injector line) and<br>equipment<br>breakdown.                   | Catastrophic | Possible   | High       | 2 pumps available.<br>Daily chlorine<br>testing results.<br>Visual checks by<br>operators and<br>manual<br>adjustments.                                                                                                                                                                                   | Moderate    | Rare       | Low        | Confident |                  |

| Hazard                             | Hazardous event                           | event Max risk Existing preventive Res risk |            |            | Uncertainty                                                                                                                                                                                                                                                                                                                                       | Risk management |            |            |           |                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------|-------------------------------------------|---------------------------------------------|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                           | Consequence                                 | Likelihood | Risk level | measures / barriers                                                                                                                                                                                                                                                                                                                               | Consequence     | Likelihood | Risk level |           | improvement plan                                                                                                                                                                                                                                                                                                                                             |
|                                    | High turbidity                            |                                             |            |            | Two more re-dose<br>points further<br>downstream.<br>Automated dosing<br>has a cut-off inside<br>SCADA that shuts<br>down the entire<br>system until the<br>fault is resolved.                                                                                                                                                                    |                 |            |            |           |                                                                                                                                                                                                                                                                                                                                                              |
|                                    | Insufficient<br>contact time              | Major                                       | Possible   | High       | Sufficient mixing<br>and contact time<br>available through<br>presence of clear<br>water tank and 2<br>reservoirs. > 30<br>minutes before<br>water reaches first<br>customer.                                                                                                                                                                     | Minor           | Unlikely   | Low        | Confident |                                                                                                                                                                                                                                                                                                                                                              |
| Disinfection by-<br>products (THM) | High organic<br>content in raw<br>water   | Moderate                                    | Possible   | Medium     | High organic load<br>not suspected in<br>groundwater.<br>Two high turbidity<br>bores taken off line.                                                                                                                                                                                                                                              | Minor           | Unlikely   | Low        | Reliable  |                                                                                                                                                                                                                                                                                                                                                              |
| Chlorate                           | Chlorine stock<br>storage and<br>turnover | Moderate                                    | Possible   | Medium     | Sodium<br>hypochlorite is<br>purchased as 10%<br>w/v available<br>chlorine. The<br>chlorine containers<br>are stored indoors<br>so that no direct<br>sunlight hits the<br>containers and in a<br>bunding area. High<br>quality chlorine is<br>purchased from<br>Elite Chemicals<br>Company to ensure<br>there are no or<br>minimum<br>impurities. | Minor           | Unlikely   | Low        | Estimate  | Comment:<br>Snapshot<br>monitoring data<br>shows that chlorate<br>production is under<br>control. Action to<br>reduce chlorate is<br>being done to the<br>best possible and<br>practical means. It<br>is realised that<br>disinfection should<br>not be<br>compromised, as<br>non-disinfected<br>water poses<br>significantly greater<br>risk than chlorate. |

#### **Clear Water tank**

| Hazard                | Hazardous event                                                     |             | Max risk   |            | Existing preventive                                                                                                                                                       | e Res risk  |            |            | Uncertainty | Risk management  |
|-----------------------|---------------------------------------------------------------------|-------------|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-------------|------------------|
|                       |                                                                     | Consequence | Likelihood | Risk level | measures / barriers                                                                                                                                                       | Consequence | Likelihood | Risk level |             | improvement plan |
| Bacteria<br>(harmful) | No cover / not<br>vermin proofed<br>(overflow pipes)                | Major       | Possible   | High       | Well covered and<br>sealed. 2 chlorine<br>re-dose points after<br>clear water tank.<br>Flushed every<br>Monday. Inside<br>thoroughly cleaned<br>at least twice a<br>year. | Minor       | Unlikely   | Low        | Confident   |                  |
|                       | Roof runoff<br>seepage through<br>roof cover                        | Major       | Possible   | High       | Well covered and<br>sealed.<br>2 chlorine re-dose<br>points after clear<br>water tank.                                                                                    | Minor       | Unlikely   | Low        | Confident   |                  |
|                       | Tank condition<br>and integrity<br>(cracks) enabling<br>ingress.    | Major       | Possible   | High       | Tank in very good<br>condition.<br>2 chlorine re-dose<br>points after clear<br>water tank.                                                                                | Minor       | Rare       | Low        | Confident   |                  |
| Turbidity             | No periodic<br>cleaning (sludge<br>layer) / High<br>chlorine demand | Major       | Possible   | High       | Flushed every<br>Monday. Inside<br>thoroughly cleaned<br>at least twice a<br>year. 2 chlorine re-<br>dose points after<br>clear water tank.                               | Minor       | Unlikely   | Low        | Confident   |                  |

#### Reservoir – storage tanks

| Hazard                                                                | Hazardous event Max risk Existing preventive Res risk                |             |            | Uncertainty | Uncertainty Risk management                                                                               |             |            |            |           |                  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------|------------|-------------|-----------------------------------------------------------------------------------------------------------|-------------|------------|------------|-----------|------------------|
|                                                                       |                                                                      | Consequence | Likelihood | Risk level  | measures / barriers                                                                                       | Consequence | Likelihood | Risk level |           | improvement plan |
| Bacteria<br>(harmful)                                                 | No cover / not<br>vermin proofed<br>(overflow pipes)                 | Major       | Possible   | High        | Well covered and<br>sealed. Chlorine re-<br>dose point after<br>reservoirs.                               | Minor       | Unlikely   | Low        | Confident |                  |
|                                                                       | Seepage through roof cover                                           | Major       | Possible   | High        | Entry point with<br>raised lip and<br>secured cover.<br>Chlorine re-dose<br>point at reservoir<br>outlet. | Minor       | Unlikely   | Low        | Confident |                  |
|                                                                       | Reservoir<br>condition and<br>integrity (cracks)<br>enabling ingress | Major       | Possible   | High        | Reservoirs in very<br>good condition.<br>Chlorine re-dose<br>point at reservoir<br>outlet.                | Minor       | Rare       | Low        | Confident |                  |
| Turbidity (can<br>lead to<br>bacterial<br>shielding from<br>chlorine) | No periodic<br>cleaning (sludge<br>layer) / High<br>chlorine demand  | Major       | Possible   | High        | Chlorine re-dose at<br>reservoir outlet.<br>Reservoirs cleaned<br>every 2 years.                          | Moderate    | Possible   | Low        | Confident |                  |
|                                                                       |                                                                      |             |            |             |                                                                                                           |             |            |            |           |                  |
| No water                                                              | Pump failure at<br>Clear Water Tank.                                 | Moderate    | Possible   | Medium      | 3 pumps available.<br>SCADA controlled<br>and alarmed to<br>show failures for<br>fixing.                  | Minor       | Rare       | Low        | Confident |                  |

#### Reticulation

| Hazard                                            | Hazardous event                                                                       |             | Max risk   |            | Existing preventive                                                                                                                            | tive Res risk |            |            | Uncertainty | Risk management  |
|---------------------------------------------------|---------------------------------------------------------------------------------------|-------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|-------------|------------------|
|                                                   |                                                                                       | Consequence | Likelihood | Risk level | measures / barriers                                                                                                                            | Consequence   | Likelihood | Risk level |             | improvement plan |
| Bacteria<br>(harmful)                             | Pipe breaks /<br>main breaks (age,<br>pressure).<br>Dead end / long<br>detention time | Major       | Possible   | High       | All digging or<br>excavation<br>authorised by water<br>supplier. Reactive<br>maintenance.<br>Monthly flushing<br>using a flushing<br>schedule. | Minor         | Unlikely   | Low        | Reliable    |                  |
|                                                   | Low or negative<br>pressure /<br>backflow                                             | Major       | Possible   | High       | System is always<br>pressurised (no<br>history of issues).                                                                                     | Minor         | Rare       | Low        | Confident   |                  |
| Turbidity                                         | Pipe breaks /<br>main breaks (age,<br>pressure).<br>Dead end / long<br>detention time | Moderate    | Possible   | Medium     | All digging or<br>excavation<br>authorised by water<br>supplier. Reactive<br>maintenance.<br>Monthly flushing<br>using a flushing<br>schedule. | Minor         | Unlikely   | Low        | Reliable    |                  |
| Metals –<br>copper<br>(leaching due<br>to low pH) | Leaching from<br>joints/solders –<br>households                                       | Moderate    | Possible   | Medium     | Daily pH tests to guide corrective actions.                                                                                                    | Minor         | Unlikely   | Low        | Confident   |                  |
| No water                                          | Pipe breaks /<br>main breaks (age,<br>pressure)                                       | Moderate    | Possible   | Medium     | All digging or<br>excavation<br>authorised by water<br>supplier. Reactive<br>maintenance.                                                      | Minor         | Unlikely   | Low        | Confident   |                  |

#### Whole of Service

| Hazard & Hazardous event                                                                                                                                                                 |              | Max risk   |            | Existing preventive                                                                                                                                                                            | Res risk      |            |            | Uncertainty       | Risk management                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|-------------------|------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                          | Consequence  | Likelihood | Risk level | measures / barriers                                                                                                                                                                            | Consequence   | Likelihood | Risk level |                   | improvement plan                                                                               |
| Bad or poor chemical (chlorine)<br>quality - ineffective disinfection<br>leading to presence of harmful<br>bacteria                                                                      | Major        | Rare       | Medium     | Chemical<br>purchased from<br>reputable company<br>in Cairns, with good<br>record. Provider<br>has confidence in<br>chemical supplier.                                                         | Insignificant | Rare       | Low        | Almost<br>certain |                                                                                                |
| No chemical - no disinfection leading<br>to presence of harmful bacteria                                                                                                                 | Major        | Rare       | Medium     | Visual checks for<br>stock at hand<br>guiding the<br>ordering. Inventory<br>stock take schedule<br>in place.                                                                                   | Insignificant | Rare       | Low        | Confident         |                                                                                                |
| Untrained staff (formally) - no or poor<br>water treatment leading to presence<br>of harmful bacteria and water of poor<br>aesthetic quality                                             | Catastrophic | Possible   | High       | On the job training.<br>Experience.<br>Supervision and<br>guidance by<br>Manager.                                                                                                              | Minor         | Possible   | Medium     | Confident         | Investigate possible<br>opportunity for<br>formal training for<br>existing staff.              |
| No standard operating procedures -<br>poor operation of plant and<br>treatment processes leading to<br>presence of harmful bacteria, water<br>of poor aesthetic quality and no<br>water. | Major        | Likely     | High       | On the job training.<br>Experience.<br>Supervision and<br>guidance by<br>Manager. SOPs in<br>place.                                                                                            | Moderate      | Possible   | Medium     | Confident         | Continually update<br>SOPs for all<br>relevant<br>procedures and<br>operational<br>philosophy. |
| Vandalism and terrorism -<br>introduction of harmful bacteria or<br>toxic chemicals                                                                                                      | Major        | Rare       | Medium     | Well fenced and<br>secured bores and<br>treatment plant<br>facility.<br>Visual checks by<br>operators.                                                                                         | Minor         | Rare       | Low        | Confident         |                                                                                                |
| Electricity shut down - no water and treatment process                                                                                                                                   | Moderate     | Rare       | Low        | Ergon company<br>agreement with<br>Government for<br>essential services.<br>2 large reservoirs<br>providing relief for<br>short term.<br>Automated<br>generators in place<br>at bores and WTP. | Minor         | Rare       | Low        | Confident         |                                                                                                |

| Staff safety (chemical handling) -<br>injured staff or absent staff leading to<br>poor operation of plant and<br>treatment processes causing<br>presence of harmful bacteria, water<br>of poor aesthetic quality and no<br>water. | Major | Rare     | Medium | Safety equipment<br>(PPE) used by<br>staff.<br>On the job training.<br>Staff experience. | Minor    | Rare     | Low    | Confident | Investigate possible<br>opportunity for<br>formal training for<br>existing staff.                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|--------|------------------------------------------------------------------------------------------|----------|----------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Interference/disruption of SCADA<br>unintentional, including hardware<br>failure                                                                                                                                                  | Major | possible | High   | System backups<br>and access to<br>external experts                                      | Moderate | Possible | Medium | Reliable  | Develop systems to<br>ensure backup and<br>recovery is<br>available                                                                              |
| Interference /disruption of SCADA<br>through internal intentional malice                                                                                                                                                          | Major | unlikely | Medium | Simple password<br>and access levels<br>system                                           | Moderate | Unlikely | Medium | Reliable  | Develop secure<br>system to protect<br>SCADA from<br>internal intentional<br>malice including<br>login tracking<br>systems                       |
| Interference/disruption of SCADA<br>through unauthorised external<br>access                                                                                                                                                       | Major | Possible | High   | Limited prevention<br>other than simple<br>password systems                              | Moderate | Unlikely | Medium | Reliable  | Develop secure<br>system to protect<br>SCADA from<br>external threat<br>including and to<br>provide recovery if<br>security has been<br>breached |
|                                                                                                                                                                                                                                   |       |          |        |                                                                                          |          |          |        |           |                                                                                                                                                  |

# 6. Managing Risks

### 6.1. Risk Management Improvement Program

The risk management improvement actions from the hazard identification and risk assessment matrices have been reproduced below to formulate a risk management improvement program.

The priority level has been stated as low, medium or high. High priority has been assigned to a hazard that can have immediate impact on public health (so basically harmful bacteria). Low priority has been assigned to infrastructure improvements (budget implications). Low priority has also been given to snapshot monitoring as it is an external activity which Hope Vale Provider will participate in, but will benefit from. Medium priority has been given to operational improvements such as developing SOPs, monitoring and investigative actions. The timeframe for activities is related to available resources (budget and staff time) balanced against public health implications. However, high priority items will be addressed immediately.

#### Catchment and source infrastructure

| Hazard                            | Hazardous event                        | Risk management improvement action                                                                                                                  | Priority | Timeframe                                                                                                                                              | Responsibility   |
|-----------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Pesticide residues                | Spraying of Round up around bore fence | Participate in the snapshot<br>monitoring program in 2012 to gather<br>data to review risk level later.                                             | Low      | Completed                                                                                                                                              |                  |
| Turbidity                         | Natural                                | Implement the monitoring of turbidity<br>at inlet to treatment plant. Undertake<br>investigations for further filtration<br>possibilities at bores. | High     | Currently being routinely<br>undertaken, investigations<br>underway inside the<br>2019/21 ICCIP funding<br>program. Estimated<br>completion June 2021. | Tom, Ops Manager |
| Iron (aesthetic) –<br>GA1 and PB1 | Natural geology                        | Participate in the snapshot<br>monitoring program to gather more<br>data to review risk level later.                                                | Low      | Completed                                                                                                                                              |                  |
| No water                          | Electrical failure                     | Electrical upgrade at bores for generator plug in.                                                                                                  | Low      | Completed                                                                                                                                              |                  |
| Heavy metals of concern (As, F)   | Natural geology                        | Participate in the snapshot<br>monitoring program to gather more<br>data to review risk level later.                                                | Low      | Completed                                                                                                                                              |                  |
| Radionuclides                     | Natural geology                        | Participate in the snapshot<br>monitoring program to gather more<br>data to review risk level later.                                                | Low      | Completed                                                                                                                                              |                  |

#### Treatment process

| Hazard                         | Hazardous event                                                                  | Risk management improvement                                   | Priority | Timeframe | Responsibility |
|--------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|----------|-----------|----------------|
|                                |                                                                                  | action                                                        |          |           |                |
| Iron (aesthetic) –<br>aeration | Iron build up causing<br>blockage / Iron<br>breakthrough / Aerator<br>efficiency | Building proper clean up deck for ease and safety of cleaning | Low      | Completed |                |
| Iron (aesthetic) –<br>aeration | No SOP                                                                           | Development of relevant SOP                                   | Medium   | Completed | Tom            |
| Optimal pH                     | No SOP                                                                           | Development of relevant SOP                                   | Medium   | Completed | Tom            |

#### **Disinfection process**

| Hazard               | Hazardous event                                                                                                                  | Risk management improvement                                   | Priority | Timeframe | Responsibility |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|-----------|----------------|
|                      |                                                                                                                                  | action                                                        |          |           |                |
| Chlorine (over dose) | No SOPs                                                                                                                          | Development of relevant SOP                                   | Medium   | Completed | Tom            |
| Bacteria (harmful)   | Under dose of chlorine<br>/ no chlorine caused by<br>pipe burst (injector line)<br>and equipment<br>breakdown. High<br>turbidity | Replace pumps.<br>Reconnect to SCADA to control<br>operation. | High     | Completed |                |

#### Reservoir – storage tanks

| Hazard                 | Hazardous event       | Risk management improvement action | Priority | Timeframe     | Responsibility |
|------------------------|-----------------------|------------------------------------|----------|---------------|----------------|
| Turbidity (can lead    | No periodic cleaning  | Investigate cleaning program for   | Medium   | Now routinely |                |
| to bacterial shielding | (sludge layer) / High | reservoirs.                        |          | undertaken    |                |
| from chlorine)         | chlorine demand       |                                    |          |               |                |

#### Whole of Service

| Hazard and Hazardous event                                          | Risk management improvement action                                         | Priority | Timeframe                            | Responsibility   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|----------|--------------------------------------|------------------|
| No chemical                                                         | Develop chemical inventory log sheet for<br>improved management.           | Medium   | completed                            |                  |
| Untrained staff (formally)                                          | Investigate possible opportunity for formal training for existing staff.   | Medium   | ongoing                              | Tom              |
| No standard operating procedures                                    | Develop SOPs for all relevant procedures and<br>operational philosophy     | Medium   | completed                            | Tom              |
| Electricity shut down                                               | Carry out electrical upgrade at bores for<br>generator plug in.            | Low      | completed                            |                  |
| Staff safety - chemical handling                                    | Investigate possible opportunity for formal training for existing staff.   | Medium   | ongoing                              |                  |
|                                                                     |                                                                            |          |                                      |                  |
| Emergency situation<br>communications                               | Develop community notification / messaging e.g. boil water alert template. | Medium   | completed                            | Gene             |
| SCADA hardware failure or<br>untintentional program<br>interference | Develop system of backup and recovery                                      | High     | Underway/to be<br>completed Dec 2020 | Tom/Gene/HVAC IT |
| Cyber Security Event affecting<br>SCADA - internal                  | Develop system to prevent, detect and recover from internal cyber attacj   | High     | Underway/to be<br>completed Dec 2020 | Tom/Gene/HVAC IT |
| Cyber Security Event affecting<br>SCADA - external                  | Develop systems to prevent, detect and recover from external cyber attack  | High     | Underway/to be<br>completed Dec 2020 | Tom/Gene/HVAC IT |

Note: For the development of standard operating procedures the timeframe indicates by when all SOPs will be developed. However, DNRME will be informed annually of SOPs which are developed towards the completion of the Improvement Plan action. SOPs have been developed for all water testing equipment operations.

## 6.2. Operation and maintenance procedures

Written operations and maintenance procedures are being developed on a priority basis. In particular the main procedures undertaken include:

• Water sampling and in-house testing

Some of the procedures to be further developed include:

- Flushing of mains (dead ends) and storage/reservoirs
- Cleaning of storage tanks
- Repair of mains/pipes for leaks and breakages

The recording logs or documents that are currently used include:

| Log                                              | Version    | Next revision date                                                             |
|--------------------------------------------------|------------|--------------------------------------------------------------------------------|
| Daily testing log for chlorine, pH and turbidity | June 2017  | As per need when changes are necessary, determined by Manager Water and Waste. |
| Water main flushing schedule                     | April 2020 | As per need when changes are necessary, determined by Manager Water and Waste. |
| Daily treatment log (operations check)           | Jan 2018   | As per need when changes are necessary, determined by Manager Water and Waste. |
| Bore water level                                 | Sept 2018  | As per need when changes are necessary, determined by Manager Water and Waste. |

The daily testing and treatment logs are electronic Excel spreadsheets which are accessible in the computer in the office to all operations staff for entering the data.

The water mains flushing schedule is printed in hard copies and filled in the field by operations staff noting the flushing duration, colour of water and general comments.

The Manager Water and Waste is responsible for filing all records.

#### Process for implementing operational procedures

Although some operational procedures have not been finalised, the Hope Vale Provider follows operational procedures. Ensuring that operational procedures are carried out appropriately is the responsibility of the operators and the Manager. Operators are trained on the job in procedures relevant to their role by the Manager, upon employment and then through continuous interactions.

It the responsibility of the Manager to ensure that the procedures are understood and implemented by operational staff. This is done through on the job guidance and training. To ensure staff understand and adhere to procedures, the Manager undertakes visits to inspect work and ask questions.

The site inspections are done to check and ensure that procedures are been followed and to identify any emerging issues.

### 6.3. Management of incidents and emergencies

The process for managing drinking water incidents and emergencies are described in the tables below. The first table provides the overview (alert level, description, key response and positions responsible). The second table gives the summary of actions and procedures.

All level 2 and 3 alerts are notified to the Manager – Water and Waste, who remains on call by mobile phone on 0427732203.

The water staff have received on the job training on incident protocols in order to operate as required. Actions to be taken for incidents are presented in the Operational and Verification Monitoring section of the DWQMP.

During an emergency situation, the CEO takes the lead. The Manager Water and Waste is part of the emergency response team, and coordinates the water (and wastewater) activities for his staff. Fortunately, there has not been a need to activate the emergency protocols.

# Management of Incident and Emergency Levels – Overview

| Alert Level                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Key management<br>response(s)                                                                                                                                                                                                                                                       | Position(s) responsible                                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Level 3:<br>Emergency                 | <ul> <li>outbreak of waterborne disease</li> <li>declared disaster or emergency situation by the<br/>Council or state/national government</li> </ul> Requires coordination across the Council departments<br>and is likely to require external resourcing and support<br>from agencies, such as Office of the Water Supply<br>Regulator, Queensland Health, local disaster<br>management groups, emergency responders QFRS,<br>Police                                                                                                                                                                                                                                                                                                           | Activate disaster<br>management plan<br><i>Refer to summary of</i><br><i>actions and procedures</i>                                                                                                                                                                                 | CEO.<br>Manager Water and<br>Waste is part of the<br>response team. |
| Level 2:<br>Incident                  | <ul> <li>non-compliance (typically against the ADWG values)</li> <li>event (anything that has happened or is likely to happen, in relation to a drinking water service that may have an adverse effect on public health). Examples include natural disaster (flood, drought), bushfire, inability to operate system within acceptable operational limits, contamination of source water, contamination of treated water, terrorism.</li> <li>Incident is managed within the team responsible for drinking water operations and management in line with the Hope Vale DWQM Plan. In some cases, it may require coordination across the Council departments and external resources and support, such as from DNRME, Queensland Health.</li> </ul> | Activate drinking water<br>incident response and<br>reporting protocols.<br>Ensure all control<br>measures identified in<br>the DWQM Plan are<br>functioning effectively.<br>Disaster management<br>plan on standby.<br><i>Refer to summary of</i><br><i>actions and procedures</i> | Manager – Water and<br>Waste                                        |
| Level 1:<br>Operational<br>exceedence | <ul> <li>Exceedences of operational limits (as per the operational monitoring section of the Plan).</li> <li>Incident is managed within the water operations team. An incident is not declared and the issue can be managed in line with the DWQM Plan.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ensure all operational<br>steps identified in the<br>DWQM Plan are<br>functioning effectively.<br>Check and act upon<br>operations records.<br>Incident response and<br>reporting protocols on<br>standby.<br>Refer to summary of<br>actions and procedures                         | System operator under<br>guidance from Manager<br>– Water and Waste |

# Management of Incident and Emergency Levels – Summary of Actions and Procedures

| Alert Level                           | Key management response(s)                                                                                                                                                                                                                | Brief summary of actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Documented Plans & Procedures                                                                                                                                  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level 3:<br>Emergency                 | Activate disaster<br>management plan                                                                                                                                                                                                      | <ul> <li>Notify Council.</li> <li>Coordinate notification, investigation and response of water related aspects</li> <li>Consider what community notification / messaging is needed (e.g. do not drink alert, boil water alert or bottled/emergency water distribution)</li> <li>Coordinate community messaging, for e.g. boil water alert, do not drink alert as required</li> <li>Notify DNRME as soon as practicable</li> </ul>                                                                                                                                                                                                                                                                                                                            | Disaster management<br>plan.<br>Community notification /<br>messaging e.g. boil<br>water alert needs to be<br>developed (added to the<br>Improvement Program). |
| Level 2:<br>Incidents                 | Activate drinking<br>water incident<br>response and<br>reporting protocols.<br>Ensure all control<br>measures identified<br>in the DWQM Plan<br>are functioning<br>effectively.<br>Disaster<br>management plan<br>on standby.             | <ul> <li>Notify Manager - Water and Waste.</li> <li>Report incident to DNRME within the required timeframe</li> <li>Ensure all control measures identified in the DWQM Plan are functioning effectively.</li> <li>Commence investigation to determine cause if not traceable through the DWQM Plan</li> <li>Arrange for re-samples to be taken where required</li> <li>Instigate immediate remediation actions, including isolation of affected area where possible</li> <li>Review associated laboratory reports and operational records.</li> <li>In case of customer complaints, coordinate investigation and resolution, including obtaining water samples where required</li> <li>Disaster management plan is on standby if the need arises.</li> </ul> | Incident response and<br>reporting protocols (i.e.<br>DNRME Water Quality<br>and Reporting<br>Guideline).<br>Hope Vale DWQM Plan.                              |
| Level 1:<br>Operational<br>exceedence | Ensure all<br>operational steps<br>identified in the<br>DWQM Plan are<br>functioning<br>effectively.<br>Check and act upon<br>operations and<br>maintenance<br>records.<br>Incident response<br>and reporting<br>protocols on<br>standby. | <ul> <li>Notify System Operator and Manager - Water and<br/>Waste.</li> <li>Review operations and maintenance records for<br/>anomalies</li> <li>Commence investigation to determine cause, if not<br/>identifiable through operational records</li> <li>Instigate immediate remediation actions</li> <li>Ensure all control measures identified in the DWQM<br/>Plan are functioning effectively.</li> <li>Increase operational monitoring frequency where<br/>required</li> <li>Ensure incident response and reporting protocols are<br/>on standby if the need arises.</li> </ul>                                                                                                                                                                         | Operations and<br>maintenance<br>procedures (these are<br>not documented so are<br>part of the Improvement<br>Plan).<br>Hope Vale DWQM Plan.                   |

### 6.4. Service Wide Support – Information Management

#### Water Quality Information

Daily water quality measurements are undertaken by the Hope Vale Water Officers and initially recorded on hardcopy daily log sheets. The quality measurements are taken at the locations noted in the Tables in Section 7.1. The hardcopy daily sheets are stored in the Water Treatment Plant Office

The daily readings are transferred to the Daily Water Reading Log Sheets spreadsheet located on the Water Treatment Plant Operations Computer. Any readings which fall outside the operational limits automatically appear in warning colours and the Water Officers will advise the Water and Waste Manager for action if required. This may include advising the Operations Manager.

On a monthly basis, the completed monthly totals are presented to the Operations Manager via the transfer of the Daily Water Reading Log Sheet.

On a yearly basis, the summary yearly totals derived from the Daily Water Reading Log Sheets are compiled by the Operations Manager and sent to DNRME as a a component of the DWQMP Yearly Report. All digital spreadsheet files are maintained by Council and backups are routinely made as per Councils IT management system.

#### Incident reporting protocol

The incident reporting protocols (mentioned earlier under the management of incident and emergencies section) have been adopted from the DNRME Drinking Water Service Provider Monitoring and Reporting Requirement guidelines.

This is summarised as below:

| Incident                                                                                            | Reporting requirements (to DNRME)                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Detection of <i>E. coli</i> , detection of a pathogen, failure to meet ADWG health guideline values | By telephone within 3 hours of receipt of test results |
| Radiological (exceed levels described in the notice)                                                | By telephone within 3 hours of receipt of test results |
| Parameters with no ADWG guideline value                                                             | Written confirmation within 24 hours                   |
| An event likely to affect water quality                                                             | By telephone as soon as practicable                    |

The Manager Water and Waste is responsible for reviewing data for incident reporting, following up on incident resolution and closure.

# 7. Operational and Verification Monitoring

# 7.1. **Operational Monitoring**

The operational monitoring for Hope Vale contains a planned sequence of measurements and observations to ensure that the system is operating within the set performance limits and the process elements are functioning optimally to achieve safe drinking water.

The process step where testing is done, the parameter tested and the logic for testing the parameter is stated below:

Operational monitoring of the water system at Hope Vale includes a continuous monitoring system via a supervisory control and data acquisition (SCADA) system and through a physical on-site sampling program.

#### SCADA

The SCADA systems analyses and records critical characteristics which are monitored by the operators. The monitoring system is alarmed so that the operators are alerted promptly of adverse results.

The SCADA system is available to monitor a number of critical items in the Hope Vale system, including:

- Bore running status, flowrate, fault status and bore water level
- Raw and treated water flowrates
- Clearwater tank and main reservoir water levels
- Free chlorine readings and chlorine tank levels
- Automated Chlorine pumping status, flowrate and fault status
- Transfer pump running status, flowrates and fault status

Operators have the ability to remotely adjust setpoints and operate pumps and bores if necessary

#### Sampling

The Hope Vale operational monitoring system includes the sampling and recording of the following characteristics:

- Free Chlorine
- pH
- Turbidity, and
- E. Coli

The table below summarises the operational monitoring schedule, with target and critical limits for the various parameters and how excursions are managed.

| Process step /        | Parameter     | Associated                            | Ited Sampling Target limit Action if | Critical limit                         | Action if |                                                 |                                                                             |                     |                                                                                                                                                                                                                               |
|-----------------------|---------------|---------------------------------------|--------------------------------------|----------------------------------------|-----------|-------------------------------------------------|-----------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| location in<br>system |               | hazard                                | Frequency                            | Method                                 | Analysis  |                                                 | target limit is<br>not met                                                  |                     | critical limit is exceeded                                                                                                                                                                                                    |
| Aerator inlet         | рН            | Optimum pH                            | Daily                                | Eutech Hand<br>held Analyser<br>pH 150 | In-house  | NA (monitoring only)                            |                                                                             |                     |                                                                                                                                                                                                                               |
|                       | E. coli       | Bacteria<br>(harmful)                 | Weekly                               | Colilert                               | In-house  | 0 MPN/100ml                                     | Re-test. Isolate targetted bore and re-test                                 | 0 MPN/100ml         | Report to<br>DNRME within<br>3 hours                                                                                                                                                                                          |
|                       | Turbidity     | Turbidity                             | Weekly                               | HACH 2100Q<br>Turbidimeter             | In-house  | NA (monitoring only)                            |                                                                             |                     |                                                                                                                                                                                                                               |
| Aerator outlet        | рН            | Optimum pH                            | Daily                                | Eutech Hand<br>held Analyser<br>pH 150 | In-house  | 6.5-8.0                                         | Inspect aerator<br>for correct<br>operation                                 | <6.5, >8.5          | Clean aerator<br>plates. Ensure<br>free chlorine<br>level is within<br>target range.                                                                                                                                          |
| Plant outlet          | Free chlorine | Bacteria<br>(harmful) and<br>chlorine | Daily                                | Palintest<br>Chlorometer               | In-house  | >0.2 mg/L,<br><2mg/L                            | Confirm<br>correct<br>analyser<br>calibration and<br>SCADAis<br>operational | <0.2mg/L,<br>>5mg/L | Confirm correct<br>SCADA<br>operation after<br>automatic<br>system<br>shutdown.<br>Correct fault. If<br>fault cannot be<br>corrected<br>override<br>SCADA and<br>adjust setpoint<br>manually until<br>SCADA is<br>operational |
|                       | Turbidity     | Turbidity                             | Daily                                | HACH 2100Q<br>Turbidimeter             | In-house  | As low as<br>possible,<br>preferably <<br>5NTU. | Confirm<br>cleanliness of<br>settling tank                                  | >10NTU              | .Investigate<br>settling tank<br>and clean if<br>necessary                                                                                                                                                                    |
|                       | рН            | Optimum pH                            | Daily                                | Palintest 7100<br>Photometer           | In-house  | 6.5-8.0                                         | Inspect aerator<br>for correct<br>operation                                 | <6.5, >8.0          | Clean aerator<br>plates. Ensure<br>free chlorine<br>level is within<br>target range.                                                                                                                                          |
|                       |               |                                       |                                      |                                        |           |                                                 |                                                                             |                     |                                                                                                                                                                                                                               |

| Process step /                                                                           | Parameter     | Associated                            | Sampling  |                              |          | Target limit                                    | Action if                                                                 | Critical limit         | Action if                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------|---------------|---------------------------------------|-----------|------------------------------|----------|-------------------------------------------------|---------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| location in system                                                                       |               | hazard                                | Frequency | Method                       | Analysis |                                                 | target limit is<br>not met                                                |                        | critical limit is exceeded                                                                                                                                                                                                                                                              |
| Reservoir<br>outlet after<br>chlorinator                                                 | Free chlorine | Bacteria<br>(harmful) and<br>chlorine | Daily     | Palintest<br>Chlorometer     | In-house | >0.5 mg/L, <2<br>mg/L                           | Confirm correct<br>analyser<br>calibration and<br>SCADA is<br>operational | <0.2mg/L and<br>>5mg/L | Confirm correct<br>SCADA<br>operation after<br>automatic<br>system<br>shutdown.<br>Correct fault. If<br>fault can not be<br>corrected<br>override<br>SCADA and<br>adjust setpoint<br>manually until<br>SCADA is<br>operational.<br>Notify the<br>Regulator if<br>limits are<br>exceeded |
|                                                                                          | Turbidity     | Turbidity                             | Daily     | HACH 2100Q<br>Turbidimeter   | In-house | As low as<br>possible,<br>preferably <<br>5NTU. | Confirm<br>cleanliness of<br>storage tank.                                | >10NTU                 | Investigate<br>contamination<br>and clean tank<br>if necessary.                                                                                                                                                                                                                         |
|                                                                                          | рН            | Optimum pH                            | Daily     | Palintest 7100<br>Photometer | In-house | 6.5-8.0                                         | Inspect aerator<br>for correct<br>operation                               | <6.5, >8.0             | Clean aerator<br>plates. Blend<br>water from<br>town bores<br>Ensure free<br>chlorine level is<br>within target<br>range.                                                                                                                                                               |
|                                                                                          | E. coli       | Bacteria<br>(harmful)                 | Weekly    | Colilert                     | In-house | 0 MPN/100ml                                     | Re-test                                                                   | 0 MPN/100ml            | Report to<br>DNRME within<br>3 hours                                                                                                                                                                                                                                                    |
| Town (4 sites)<br>on a rotational<br>basis. Refer<br>Sampling<br>Location Table<br>below | Turbidity     | Turbidity                             | Daily     | HACH 2100Q<br>Turbidimeter   | In-house | As low as<br>possible,<br>preferably <<br>5NTU. | Inspect<br>reticulation<br>lines for<br>beakage or<br>contamination       | >10NTU                 | Check to<br>ensure there<br>are no mains /<br>pipe breaks<br>and repair.                                                                                                                                                                                                                |

| Process step / Parameter |               | er Associated                         |           | Sampling                     |          | Target limit          | Action if                                   | Critical limit         | Action if                                                                                                                                                                                               |
|--------------------------|---------------|---------------------------------------|-----------|------------------------------|----------|-----------------------|---------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| location in<br>system    |               | hazard                                | Frequency | Method                       | Analysis |                       | target limit is<br>not met                  |                        | critical limit is<br>exceeded                                                                                                                                                                           |
|                          | рН            | Optimum pH                            | Daily     | Palintest 7100<br>Photometer | In-house | 6.5-8.0               | Inspect aerator<br>for correct<br>operation | <6.5, >8.0             | Clean aerator<br>plates. Blend<br>water from<br>town bores<br>Ensure free<br>chlorine level is<br>within target<br>range.                                                                               |
|                          | Free chlorine | Bacteria<br>(harmful) and<br>chlorine | Daily     | Palintest<br>Chlorometer     | In-house | >0.5 mg/L, <2<br>mg/L | Re-adjust the<br>dose rate via<br>SCADA     | <0.2mg/L and<br>>5mg/L | Re-adjust the<br>dose rate at<br>plant and at<br>the re-dose<br>point via<br>SCADA.<br>Ensure free<br>chlorine level is<br>within target<br>range. Notify<br>the Regulator if<br>limits are<br>exceeded |
|                          | E. coli       | Bacteria<br>(harmful)                 | Weekly    | Colilert                     | In-house | 0 MPN/100ml           | Re-test                                     | 0 MPN/100ml            | Report to<br>DNRME within<br>3 hours                                                                                                                                                                    |

The sampling locations relating to the Operation Monitoring Schedule are listed in the following table:

| Sampling Name    | Sampling Location                                 | LAT        | Long       |
|------------------|---------------------------------------------------|------------|------------|
| Aerator Inlet    | Aerator Inlet at Water Treatment Plant Elim Road  | -15.280943 | 145.141968 |
| Aerator Outlet   | Aerator Outlet at Water Treatment Plant Elim Road | -15.280943 | 145.141968 |
| Plant Outlet     | Laboratory Sink at Water Treatment Plant          | -15.281085 | 145.141891 |
|                  |                                                   |            |            |
| Reservoir Outlet | Laboratory Sink at Main Reservoir Site            | -15.301223 | 145.095324 |
| Town Site 1      | 3 Bayanbi Street Millers Block                    | -15.294662 | 145.086304 |
| Town Site 2      | 2 Alec Cameron Drive                              | -15.293377 | 145.104141 |
| Town Site 3      | 13D North Street                                  | -15.293264 | 145.112869 |

| Town Site 4    | 121 Link Road  | -15.299823 | 145.111710 |
|----------------|----------------|------------|------------|
| Administration | 35 Muni Street | -15.293940 | 145.106033 |

#### Visual Checks, Observations and Inspections:

Visual inspections and checks (observations) are also conducted as part of the operational monitoring to ensure that preventive measures function as required and that total reliance is not only on water quality testing.

The visual checks and inspections done include:

- Fence integrity around bores weekly by operations team.
- All chlorinators dosing pumps are working properly daily by operations team.
- Aerator flow rate daily by operations team
- Reservoir levels daily by operations team
- Bore pumps weekly by operations team
- Clear Water Tank pumps daily by operations team

Any issues or problems are notified to the Manager Water and Waste immediately and corrective actions taken to resolve the matter.

#### **Appropriateness of Program**

The operational program is appropriate to confirm and maintain the effective operation of the preventative measures due to the real-time SCADA monitoring/alarms and the broad spectrum of sampling sites throughout the community. These parameters will help ensure that the treatment and distribution operational measures are working appropriately in order to minimise risks and to provide early indication of potential items that might require action from the Hope Vale operators.

The appropriateness of each monitored item (as per the tabled monitoring program) is detailed as follows:

#### Aerator inlet:

pH - Source water (combined sources) is measured to observe changes over time.

E. coli - Source water is monitored to check for bore water contamination

Turbidity - testing undertaken to record source water characteristics and changes over time.

#### Aerator outlet:

pH – Measured to observe the effect from aeration and to ensure that the aeration plant is operating as expected

#### Treatment Plant Outlet:

Free chlorine - ensure that chlorinator and SCADA dosing is working properly and effective disinfection is done to kill any harmful bacteria. Observation of free chlorine levels can be undertaken early and allow for corrections to be made before the treated water is transferred to the main reservoir

pH - ensure that pH is within range after initial chlorination.

Turbidity - ensure that it does not exceed operational limits and affect effective chlorination. Increased turbidity might indicate contamination of the balance/settling tank

#### Reservoir outlet after chlorinator:

Free chlorine - check chlorine levels to confirm SCADA is correctly trimming the dosing rate, ensure that chlorinator is working properly, ensure reservoir is not causing high chlorine demand.

pH - check pH levels are optimal after chlorination

Turbidity - ensure reservoir is not introducing turbidity.

E. coli – treated water is tested to ensure that no contamination has occurred within the main storage reservoirs

#### <u>Town:</u>

Turbidity - ensure it is within aesthetic limits or if high, investigate a physical breakage or interruption in the reticulation system.

pH - check pH levels are optimal after passing through the storage and reticulation pipework

Free chlorine – residual levels are taken from various sites around the town on a planned rotational basis to ensure that all areas have appropriate chlorine levels. The levels are recorded to ensure that areas of low flow still have a residual level above the minimum target. Consistent low levels would indicate the possible requirement for revised network flow or regular line scouring.

*E-Coli* – A positive recording would indicate a breakdown in the chlorinated supply requiring an immediate notification to the Regulator

# 7.2. Verification Monitoring (Reportable to DNRME)

The verification monitoring for Hope Vale is used to confirm that safe water is delivered to customers in compliance with the ADWG and Public Health Act. The verification monitoring also verifies that the preventive measures stated in the DWQMP are functioning effectively.

The parameter tested and the logic for testing the parameter is stated below:

- *E. coli* indicator for recent faecal contamination (harmful bacteria), treatment efficiency and product quality.
- Total Coliforms indicates system integrity, treatment effectiveness or post treatment ingress.
- Heterotrophic plate counts indicates system cleanliness, post treatment ingress or presence/formation of biofilms.
- Chlorine added for disinfection, health concern above 5 mg/L.

Verification monitoring is provided for chemical parameters from water samples extracted from the bores and microbial parameters from water samples extracted from reticulation sites in the town area. The verification results for the microbial parameters are confirmed on a monthly basis using the results from a NATA accredited laboratory. Hope Vale Aboriginal Shire Council uses the Cairns Regional Council Laboratory Services to undertake the validation monitoring.

The procedure to utilise the services of the Cairns Regional Council Laboratory Services to undertake the laboratory testing of the microbial samples is considered the most appropriate way to verify that the drinking water complies with the accepted water quality criteria and that the systems are operating effectively.

The laboratory provides an independent and accredited service and is authorised to immediately advise Council if any of the measured parameters have fallen outside of the Australian Drinking Water Guideline accepted limits

The table below summarises the verification monitoring, with target and critical limits and how excursions are managed.

| Parameter                  | ter ADWG or Associated Hazard      |                                                                            |                        | Frequency        |         | Analysing authority                  | Response to                                                                                                      |
|----------------------------|------------------------------------|----------------------------------------------------------------------------|------------------------|------------------|---------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                            | regulation value                   |                                                                            | Treatment plant outlet | Reservoir outlet | Town    |                                      | exceedances                                                                                                      |
| E. coli                    | < 1 cfu/100mL                      | Bacteria (harmful)                                                         | Monthly                | Monthly          | Monthly | Cairns Regional Council<br>Water Lab | Report to DNRME.<br>Re-sample.<br>Investigate cause<br>and rectify.<br>Adjust chlorine dose<br>rate as required. |
| E. Coli                    | Not present<br>(Colilert P/A test) | Bacteria (harmful)                                                         | Weekly                 | Weekly           | Weekly  | In-house                             | Report to DNRME.<br>Re-sample.<br>Investigate cause<br>and rectify.<br>Adjust chlorine dose<br>rate as required. |
| Total coliforms            | NA                                 | System integrity,<br>treatment<br>effectiveness, post<br>treatment ingress | Monthly                | Monthly          | Monthly | Cairns Regional Council<br>Water Lab | Investigate cause<br>and rectify.<br>Adjust chlorine dose<br>rate as required.                                   |
| Heterotrophic plate counts | NA                                 | System cleanliness,<br>post treatment<br>ingress, biofilms                 | Monthly                | Monthly          | Monthly | Cairns Regional Council<br>Water Lab | Investigate cause<br>and rectify.<br>Adjust chlorine dose<br>rate as required.                                   |
| Free chlorine              | 5 mg/L                             | Chlorine                                                                   | -                      | -                | Daily   | In-house                             | Report to DNRME.<br>Re-sample.<br>Investigate cause<br>and rectify.<br>Adjust chlorine dose<br>rates.            |

# 7.3. Water Sampling and Result Analysis

All operational monitoring is done by the operations team in-house using field kits for chlorine, pH and turbidity and the IDEX Colilert presence/absence test for *E. coli*. The operations team collect water samples for *E. coli* testing using the IDEXX method. All testing is done on grab samples. The in-house testing equipment are calibrated weekly by the operations team and recording in the treatment log.

The verification monitoring is also done by operations team. The samples for *E. coli* testing (colony counting) are collected and transported to the Cairns laboratory (which is NATA accredited) in eskys with ice bricks every month.

The operations team act upon the operational monitoring parameters as described above (action if critical limit is exceeded). The Manager - Water and Waste assesses and analyses the water quality results for the verification monitoring as they become available, while keeping an overview of all monitoring results and excursions.

Operations staff have received on the job training on proper sampling, analysis and testing procedures by the Manager - Water and Waste. Written procedures around these will be developed and have been stated in the Improvement Program.